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Abstract Metastasis is the process of primary tumor cells
breaking away and colonizing distant secondary sites. In order
for a tumor cell growing in one microenvironment to travel to,
and flourish in, a secondary environment, it must survive a series
of events termed the metastatic cascade. Before departing the
primary tumor, cells acquire genetic and epigenetic changes that
endow them with properties not usually associated with related
normal differentiated cells. Those cells also induce a subset of
bone marrow-derived stem cells to mobilize and establish pre-
metastatic niches [1]. Many tumor cells undergo epithelial-to-
mesenchymal transition (EMT), where they transiently acquire
morphologic changes, reduced requirements for cell-cell contact
and become more invasive [2]. Invasive tumor cells eventually
enter the circulatory (hematogenous) or lymphatic systems or
travel across body cavities. In transit, tumor cells must resist
anoikis, survive sheer forces and evade detection by the immune
system. For blood-borne metastases, surviving cells then arrest
or adhere to endothelial linings before either proliferating or
extravasating. Eventually, tumor cells complete the process by
proliferating to form a macroscopic mass [3].

Up to 90 % of all cancer related morbidity and mortality
can be attributed to metastasis. Surgery manages to ablate
most primary tumors, especially when combined with chemo-
therapy and radiation. But if cells have disseminated, survival

rates drop precipitously. While multiple parameters of the
primary tumor are predictive of local or distant relapse, biop-
sies remain an imperfect science. The introduction of
molecular and other biomarkers [4, 5] continue to im-
prove the accuracy of prognosis. However, the invasive
procedure introduces new complications for the patient.
Likewise, the heterogeneity of any tumor population [3,
6, 7] means that sampling error (i.e., since it is imprac-
tical to examine the entire tumor) necessitates further
improvements.

In the case of breast cancer, for example, women diagnosed
with stage I diseases (i.e., no evidence of invasion through a
basement membrane) still have a ~30 % likelihood of devel-
oping distant metastases [8].Many physicians and patients opt
for additional chemotherapy in order to “mop up“ cells that
have disseminated and have the potential to grow into macro-
scopic metastases. This means that~70 % of patients receive
unnecessary therapy, which has undesirable side effects.
Therefore, improving prognostic capability is highly
desirable.

Recent advances allow profiling of primary tumor DNA
sequences and gene expression patterns to define a so-called
metastatic signature [9–11], which can be predictive of patient
outcome. However, the genetic changes that a tumor cell must
undergo to survive the initial events of the metastatic cascade
and colonize a second location belie a plasticity that may not
be adequately captured in a sampling of heterogeneous tu-
mors. In order to tailor or personalize patient treatments, a
more accurate assessment of the genetic profile in the metas-
tases is needed. Biopsy of each individual metastasis is not
practical, safe, nor particularly cost-effective. In recent years,
there has been a resurrection of the notion to do a
‘liquid biopsy,’ which essentially involves sampling of
circulating tumor cells (CTC) and/or cell free nucleic
acids (cfDNA, including microRNA (miRNA)) present
in blood and lymph [12–16].
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The rationale for liquid biopsy is that tumors shed cells and/
or genetic fragments into the circulation, theoretically making
the blood representative of not only the primary tumor but also
distant metastases. Logically, one would predict that the pro-
portion of CTC and/or cfDNAwould be proportionate to the
likelihood of developing metastases [14]. While a linear rela-
tionship does not exist, the information within CTC or cfDNA
is beginning to show great promise for enabling a global
snapshot of the disease. However, the CTC and cfDNA are
present at extremely low levels. Nonetheless, newer technol-
ogies capture enough material to enrich and sequence the
patient’s DNA or quantification of some biomarkers.

Among the biomarkers showing great promise are metas-
tasis suppressors which, by definition, block a tumor cell’s
ability to complete the metastatic process without prohibiting
primary tumor growth [17]. Since the discovery of the first
metastasis suppressor, Nm23, more than 30 have been func-
tionally characterized. They function at various stages of the
metastatic cascade, but their mechanisms of action, for the
most part, remain ill-defined. Deciphering the molecular in-
teractions of functional metastasis suppressors may provide
insights for targeted therapies when these regulators cease to
function and result in metastatic disease.

In this brief review, we summarize what is known about the
various metastasis suppressors and their functions at individ-
ual steps of the metastatic cascade (Table 1). Some of the
subdivisions are rather arbitrary in nature, since many metas-
tasis suppressors affect more than one step in the metastatic
cascade. Nonetheless what emerges is a realization that me-
tastasis suppressors are intimately associated with the micro-
environments in which cancer cells find themselves [18].
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Metastasis Suppressors That Regulate Growth,
Angiogenesis, Local Invasion and/or EMT

BRMS1

The Breast cancer metastasis suppressor-1 (BRMS1) gene,
which was discovered by differential display comparing
metastasis-competent and metastasis-suppressed cells [19],
encodes a predominantly nuclear protein, which interacts with
several nuclear proteins associated with large SIN3:HDAC
(histone deacetylase) chromatin remodeling complexes. As a
result, BRMS1 is thought to control metastasis by regulating

multiple genes which are intimately involved in the metastatic
cascade, such as genes that control apoptosis, cell-cell com-
munication, and cell migration [20]. However, this proposed
mechanism of action is probably simplistic since cellular
location is critical [21–25]. A recent paper suggests that
BRMS1 suppresses lung cancer metastasis through an E3
ligase function when associated with histone acetyltransferase
p300 [26]; so, cytoplasmic functions or modifications of non-
histone proteins may be involved. The latter functions have
still not been fully defined. Other data suggest that BRMS1
may be a critical player in cellular communication with the
microenvironment, controlling phosphoinositide [27, 28] and
sphingosine kinase signaling [29]. From clinical data, BRMS1
localization and metastasis appear to be cell-type dependent
[21, 23]. Therefore, the mechanisms of action for BRMS1
metastasis suppression may vary, depending upon the cell of
origin.

Most data show that the initial steps of the metastatic
cascade (e.g., local invasion and intravasation) are individu-
ally modestly affected by BRMS1 expression [30–32].
BRMS1 decreases survival of CTC by increasing sensitivity
to anoikis [33], and the few cells that successfully seed other
organs are less capable of colonizing them [33]. A recent
study addressed how BRMS1 expression in CTC affects that
cell’s ability to respond to microenvironment, to reorganize
cytoskeleton and form cell-matrix interactions [25]. Taken
together, these data show that BRMS1 functions at the inter-
face between various microenvironments and tumor cell be-
havior. As with other metastasis suppressors, few mutations
have been found in the coding regions of the genes. However,
differential expression appears to be more critical with regard
to their ability to successfully suppress metastasis. This obser-
vation has led to exploration of the promoter methylation
patterns for the metastasis suppressors. The BRMS1 promoter
contains several CpG islands which can become methylated
and effect gene expression [34]. Chimonidou et al. recently
assessed CTC from breast cancer patients for BRMS1 expres-
sion and BRMS1 promoter methylation and found that re-
duced expression and promoter methylation correspond to
probability of recurrence from metastasis and survival [35].
Similar correlations were found in non-small cell lung cancer
cfDNA [36].

CD44

CD44 is membrane adhesion molecule that mediates
epithelial-stromal and epithelial-matrix interactions that can
direct organization of ECM and intracellular signaling. Bind-
ing to a variety of actin-cytoskeleton adaptor proteins and
signaling mediators enables CD44 to also direct cytoskeletal
organization and mediate cell adhesion and motility [37–39].
A definitive role for CD44 in metastasis suppression is more
inferred than directly demonstrated, given its role as a
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biomarker for cancer cell ‘stem-ness’ [40]. Nonetheless, there
is suggestive evidence that CD44 can function as a metastasis
suppressor. Its expression is inversely correlated with meta-
static potential in prostate cancer cell lines and CD44−/−

matings with MMTV-PyMT mice have increased lung metas-
tasis without changing primary tumor growth [41].

The mechanism of action for CD44 is amazingly complex
owing to its post-translational cleavage at both the extracellu-
lar and cytoplasmic domains, its interactions with numerous
cancer-associated factors, and its involvement in cell-cell and
cell-matrix adhesion, cell signaling, survival, growth, ‘stem-
ness’ and migration. Depending on the extracellular factor
and/or intracellular signaling with which CD44 is engaged,
it plays dual roles in promoting and suppressing tumor pro-
gression and/or metastasis [40, 42]. For these reasons, CD44
highlights the importance of understanding post-
transcriptional and -translational modifications as well as de-
fining interactions before ascribing specific functions to a
metastasis suppressor.

Collapsin Response Mediator Protein 4 (CRMP4)

CRMP4 was identified in prostate cancer by 2D-DIGE (two-
dimensional differential gel electrophoresis) proteomic analy-
sis [43]. Expression of both CRMP4 mRNA and protein is
inversely associated with lymph node metastasis of prostate
cancer. Overexpression in prostate cancer cells leads to
lowered invasion in vitro as well as fewer metastases
in vivo. CRMP4 belongs to a large family of collapsin pro-
teins which regulate axon guidance and neurite outgrowth [44,
45]. Since many of the functions involved in these processes
parallel those that take place in metastasis, one can hypothe-
size that CRMP4 is regulating chemotactic responses, motility
and invasion. Since other members of the collapsin family
have been associated with regulating tumor invasion [46], the
hypothesis is consistent with available data. However,
CRMP1 has not yet been shown to affect metastasis in vivo.
Another mechanism of actionwas reported recently –CRMP4
is a physiological substrate of GSK3 during mitotic chromo-
somal alignment by promoting cytoskeletal remodeling [47].
Whether this action of CRMP4 is relevant in metastasis sup-
pression remains to be elucidated.

Deleted in Colorectal Cancer (DCC)

DCC encodes the receptor for the axon guidance molecule
netrin and, like CRMP4, functions during neural development
to control survival and migration. Like BRMS1, DCC and
netrin affect multiple steps in the metastatic cascade. Because
DCC induces apoptosis in the absence of netrin, it is a selec-
tive advantage for tumor cells to lose DCC expression or gain
netrin expression. Loss of DCC promotes metastasis forma-
tion without affecting the primary tumor latency in a mouse

model of mammary carcinoma [48]. On the other hand, netrin
expression favors survival and angiogenesis of metastatic
tumor cells by inhibiting the pro-apoptotic effects [49]. Inter-
estingly, netrin-DCC signaling regulates a morphologic
change of epithelial cells during Drosophila wing eversion
[50], which is highly reminiscent of EMT.

Down-regulation of DCC in breast cancer cells has been
generally associated with worse prognosis and higher risk of
recurrent disease. Loss of DCC gene expression has been
correlated with more advanced stage of ovarian and gastric
cancer [51, 52]. Diminished DCC protein expression via loss
of heterozygosity for the DCC gene has also contributes to
colorectal and pancreatic tumor dissemination [53], while up-
regulation of netrin provides a growth advantage to various
cancers including breast, neuroblastoma, pancreatic and lung
as well as providing protection from hypoxia-induced apopto-
sis in mesenchymal stem cells expressing DCC [54, 55].
Together, these observations raised the possibility that
netrin-DCC signaling can modulate metastasis by interfering
with signals from the microenvironment.

Deleted in Liver Cancer 1 (DLC1)

DLC1 was identified as a breast cancer metastasis suppressor
using microarray-based transcriptional profiling of cell lines
with different metastatic efficiency [56]. Re-expression of
DLC-1 in metastatic breast cancer cells inhibits migration
and invasion in vitro and lung metastasis in vivo, but does
not alter tumorigenicity. Down-regulation of DLC-1 is nega-
tively associatedwith tumor progression in breast cancer, clear
cell renal and urothelial carcinomas [57–59]. DLC1 serves as
a GTPase activating protein (GAP) particularly for RhoA, B,
and C but also Cdc42, affecting cell polarity, actin organiza-
tion and proliferation [60]. Very little is known about the
mechanism of DLC1 in metastasis, but it seems to play
specific roles in different aspects of Rho GTPase function.
Over-expression leads to changes in cytoskeletal structure,
focal adhesions and cellular protrusions. DLC1 activation
may also play a role in sensing extracellular factor-induced
stress at secondary sites. DLC1 is often inactivated due to
genomic deletion or promoter hypermethylation [57].

Gelsolin (GSN)

Gelsolin is an actin-regulatory protein. Expression is often
decreased in tumor cells [61]. Its role as a metastasis suppressor
was first described in B16-BL6 melanoma cells [61]. Gelsolin
suppressed motility in vitro and lung metastasis in vivo, while
truncation of its carboxy-terminus abolished such effects. As-
cribing mechanism of action is complex since there are appar-
ently conflicting observations. A recent report from Yuan et al.
revealed the crucial role of transcription factor ATF3 to sup-
press metastasis of bladder cancer cells via up-regulation of

Metastasis Suppressors & Microenvironment 119



gelsolin-mediated actin remodeling [62]. However, Marino
et al. described that gelsolin over-expression increased metas-
tasis, an effect which could be ablated by co-expression of the
metastasis suppressor Nm23-H1 [63]. Still other studies sug-
gest that gelsolin-expressing cells are more sensitive to apopto-
tic cell death [61]. It is unclear the cellular context in which
gelsolin-involved apoptosis occurs.

Leukemia Inhibitory Factor Receptor (LIFR)

LIFR was first identified as tumor suppressor in breast cancer
using RNA interference-based screening [64]. However, LIFR
was also defined as a breast cancer metastasis suppressor
subsequently [65]. LIFR acts as a downstream target of
miR9, which was previously implicated as a metastasis pro-
moter in E-cadherin-negative breast cancer cells. Re-
expressing LIFR diminished local invasion and metastasis
in vivo, presumably by inhibiting extravasation and coloniza-
tion. It is not clear whether LIFR1-suppression of primary
tumor and metastasis growth are due to distinct functions.

Opposing activities of the transcriptional co-activator YAP
and TAZ (downstream effectors of Hippo signaling) appear to
be essential for LIFR-mediated metastasis suppression [65]. A
recent study from Hynes laboratory [66] further indicates a
role for YAP in breast cancer metastasis. Thus, it will be
interesting to determine whether TAZ plays a role in breast
cancer metastasis. Because only a subset of primary tumors
which lose LIFR form metastases, it will be interesting to
determine whether loss of LIFR expression is always associ-
ated with YAP and/or TAZ activation in the same cells.

Lysine-Specific Demethylase 1 (LSD1)

LSD1 is an integral component of several co-repressor com-
plexes including CoREST, CtBP, HDAC1/2 and Mi-2/nucle-
osome remodeling and deacetylase (NuRD) complex, which
remove the methylation of H3K4 [67]. LSD1 functions as a
metastasis suppressor in breast cancer models through modu-
lation of TGFβ1 and EMT [68]. In contrast, LSD1 has been
linked with high-risk tumors and evidence suggests that LSD1
expression leads to tumorigenesis and poor clinical outcomes
in prostate, colon and ovarian cancers, as well as esophageal
squamous cell carcinoma [69–71]. Pertinent to its metastasis
suppression capability, LSD1 interacts with Snail1, a key
regulator of EMT [68]. The downstream transcriptional effec-
tors of LSD1 that mediate metastasis control remain to be
identified.

MDM2 Binding Protein (MTBP)

MTBP first was identified as an MDM2 interacting partner
during elucidation of the mechanisms of MDM2 in tumori-
genesis via p53-independent mechanisms. Independent

studies showed that MTBP appears to function as a metastasis
suppressor [72–74]. Mtbp/p53 double heterozygous mice de-
veloped a significantly higher rate of metastatic tumors with-
out any difference in tumor onset. Overexpression of MTBP
significantly reduced metastasis formation of highly metasta-
tic human osteosarcoma cells in animal models with little
effect on primary tumor growth. MTBP inhibits F-actin
crosslinking, leading to decreased filopodia formation which,
in turn, reduces migration in cells lacking both MDM2 and
p53. The latter interaction appears to rely on interactions with
α-actinin-4 (ACTN4) [72]. It is worth mentioning that nuclear
MTBP is not necessary for suppression of cell migration,
which raises the question of other MTBP functions that might
be responsible for suppression of metastasis.

Ovarian Cancer G-Protein Coupled Receptor 1 (OGR1)

OGR1, originally cloned from human ovarian cancer, also
suppresses melanoma metastasis [75]. It is also among the
most down-regulated genes in metastatic prostate cancer as
well. OGR1 inhibits cell migration and transendothelial mi-
gration via increased expression of Gαi1 and inhibitory secre-
tion factors. The differential effect of OGR1 on primary tumor
growth and metastasis is tumor-type dependent and may be
related to its proton-sensing activity [76, 77], which is medi-
ated by a Gαq,, but this conclusion has not been confirmed by
independent experimental data. Intriguingly, OGR1 deficient
mice have decreased peritoneal M2, but not M1, polarized
macrophages [78], which implicates immune cell infiltration
and/or functionality in the anti-metastatic actions. And finally,
recent reports indicate that OGR1 stimulates prostaglandin E2
(PGE2) expression of human osteoblast-like cells in response
to acidic extracellular environments [79]. Connecting these
apparently random observations are the well-established
cross-talk between tumor cells and osteoblasts [80–82], re-
sponsiveness of tumor cells to PGE2 signaling [83] and
emerging data that PGE2 can control immune cell differenti-
ation states [83–85]. Thus, OGR1 appears to be a critical
mediator of tumor cell microenvironmental interactions.

Raf Kinase Inhibitor Protein (RKIP)

RKIP was initially identified as a phospholipid binding pro-
tein, which was later shown to interact and inhibit Raf1-
mediated activation of MAPK signaling. RKIP inhibits inva-
sion and acts as a metastasis suppressor in prostate cancer
[86]. RKIP expression is decreased in a number of different
cancers and it is postulated that its effects on signaling are key
to activity. Rosner and colleagues showed that RKIP inhibits
breast cancer metastasis, in part, via suppression of let-7 and
downstream genes, HMGA2 and BACH1. Together, those
downstream mediators regulate invasion, homing and
osteolysis [87–90]. Das et al. showed that RKIP interferes
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with melanoma differentiation associated gene-9 (MDA-9)-
mediated focal formation followed by suppression of melano-
ma metastasis [91]. RKIP also de-represses GSK3β inhibition
which, in turn, inhibits β-catenin, Snail and Slug activation
with expected modulation of EMT [92]. Recent data, also
from the Rosner group, show that RKIP induces and HMGA2
inhibits miR-200b expression which, in turn, inhibits expres-
sion of lysyl oxidase (LOX) [93]. Also via down-regulation of
HMGA2, RKIP inhibits syndecan-2 independently of
miR-200 [93].

Since RKIP can also enhance sensitivity to some chemo-
therapeutic agents and other stresses [94], it has also been
suggested that RKIP loss could be a mechanism exploited to
avoid immune surveillance. Thus, the notion of interplay with
the microenvironment is established. Since several cancer-
related and metastasis-related upstream factors regulate RKIP
(e.g., Snail, miR-224, and EZH2), environmental cues are
again implicated [92, 95, 96].

Src-Suppressed Protein Kinase C Substrate (SSeCKS)

SSeCKS is a scaffolding protein that controls mitogenic sig-
naling and cytoskeletal remodeling by binding key signaling
mediators. Following crosslinking to the actin cytoskeleton
and plasma membrane, SSeCKs translocates and correspond-
ingly transports macromolecules such as Src, PKC, PKA, F-
actin, calmodulin, cyclins and phospholipids to other organ-
elles. SSeCKS re-expression decreases invasion and
invadosome formation by disengaging Src from activat-
ing downstream RhoGTPase and/or PKC-Raf/MEK/
ERK-mediated pathways which, in turn, control MMP
expression [97–99].

Dependent on cell type, SSeCKS affects multiple different
steps of tumor metastasis. Gelman and colleagues have shown
that SSeCKS re-expression in rat prostate cancer cells reduces
metastasis by affecting neovascularization at distal sites, but
not by inhibiting tumor cell motility or proliferation [97, 100,
101]. Using a spontaneous metastasis model, Akakura et al.
showed that B16F10 melanoma cells developed significantly
more metastases in SSeCKS-null mice with no difference on
primary tumor growth [102]. Thus, SSeCKS performs its
metastasis suppressor activity using both tumor cell-
autonomous and non cell-autonomous mechanisms.

Stefin A

Stefin A suppresses metastasis in human esophageal squa-
mous cell carcinoma and murine mammary carcinomas
[103, 104]. It is an endogenous inhibitor of cathepsin B, a
cysteine protease, which promotes invasion [105]. Alterations
in the balance between cathepsin B and stefin A (which is also
true for other protease inhibitor interactions, such as matrix
metalloproteinases and TIMPs) regulate invasiveness (and

metastasis) in a variety of malignant tumors. Stefin A expres-
sion correlated with disease-free survival and less distant
metastasis in breast cancer patients [103].

Interestingly, Stefin A-positive metastatic nodules are sig-
nificantly larger than Stefin A negative ones. While this ob-
servation is described at metastatic sites in vivo, it has not yet
been replicated in cell culture conditions, suggesting that
expression is environmentally regulated. These observations
are reminiscent of EMT and a corresponding mesenchymal-
to-epithelial reversal proposed at sites of metastasis [106,
107]. By analogy, loss of Stefin A expression at primary sites
may allow tumor cell dissemination, but reactivation at distant
sites could inhibit outgrowth.

RhoGDI2

RhoGDI2 was originally implicated in bladder cancer metas-
tasis suppression, but is also involved in other cancer types
[108]. RhoGDI2 belongs to a small family of proteins acting
as RhoGTPase inhibitors by reducing dissociation of GDP
from Rho proteins. Src interacts with and phosphorylates
RhoGDI2 to enhance the metastasis suppressive effects
[109]. Recently, Said et al. showed that RhoGDI2-deficient
disseminated tumor cells secrete several soluble factors (i.e.,
ECM molecules, versican, CCL2 and IL6) that stimulate
macrophage recruitment [110–112]. The resulting ‘inflamma-
tion storm’ induces formation of a pulmonary pre-metastatic
niche. Modulation of microenvironment is necessary for the
RhoGDI2-induced metastasis suppression because targeting
inflammation-inducing factors/signaling phenocopies the me-
tastasis suppressor effect of RhoGDI2. Consistently, the im-
portance of RhoGDI2 in modulation of the tumor microenvi-
ronment could be extended from previous study, which
showed that loss of RhoGDI2 expression induced activation
of Endothelin1 followed by enhanced migration, invasion and
macrophage infiltration [113, 114].

Ribonucleotide Reductase Subunit M1 (RRM1)

RRM1 was confirmed as the molecule responsible for acqui-
sition of metastatic potential that occurs with loss of hetero-
zygosity on chromosome 11p15.5 in multiple human tumors
[115, 116]. RRM1 encodes the regulatory subunit of ribonu-
cleotide reductase, the heterodimeric enzyme that catalyzes
the rate-limiting step in deoxyribonucleotide synthesis. Ribo-
nucleotide reductase has central functions in DNA synthesis,
growth, tumor metastasis, and drug resistance of cancer
cells, and therefore is considered as an attractive target
for anticancer agents.

Over-expression of RRM1 reduced experimental and spon-
taneous lung metastasis [115, 117]. The link between the
enzymatic activity of RRM1 and its function to suppress
metastasis is unclear. However, RRM1 induced PTEN

Metastasis Suppressors & Microenvironment 121



expression, which seems necessary for RRM1 decreased mi-
gration, invasion and metastasis formation in vivo [115].
Clinical studies show that RRM1 and PTEN are prognostic
markers for disease-free and overall survival in NSCLC,
bladder, and pancreatic cancer. Interestingly, RRM1 expres-
sion is presumably associated with gemcitabine resistance in
patients with advanced lung cancer because Gemcitabine can
directly bind and inactivate RRM1 [118].

Metastasis Suppressors That Affect Cell Transit
and Adhesion

Caspase 8

Caspases are cysteine proteases known for their role in the
receptor-mediated intrinsic pathway of apoptosis. Caspase 8
(MACH/FLICE/Mch5) contains a FADD (Fas-associating
protein with death domain) homology domain and is the first
enzyme of the proteolytic cascade activated by the Fas ligand
(FasL), and by tumor necrosis factor (TNF) [119]. The FasL
recognizes and binds to Fas (Apo-1/CD95) receptor which
then can induce apoptosis in FasL sensitive cells. Suppression
of death receptor induced apoptosis may play a role in the
pathogenesis of some tumors. [120]. Death receptors, such as
Fas, lead to formation of the death inducing signaling complex
(DISC) which recruits and activates caspase 8 [121].

Caspase 8 is also linked to integrin-mediated regulation of
apoptosis. Signals important for survival, migration, growth
and differentiation are transduced across the cell membrane
via integrin heterodimers. Integrin expression and signaling
are regulated in response to growth factors and are important
for tumor establishment [122] and survival. Loss of integrin-
mediated adhesion is a driving signal for a cell to undergo
anoikis [122]. Even if cells are adherent, but are attached using
the ‘wrong’ integrin, they can be induced to undergo apoptosis
[123–126].

In neuroblastoma, metastasis was observed in tumors
where caspase 8 was deficient, whereas metastasis appeared
less frequently in tumors expressing caspase 8 [127], indicat-
ing its role as a metastasis suppressor. Caspase 8 appears to
determine cell survival during metastasis, but not necessarily
growth of the primary tumor. Somehow, loss of caspase 8
provides a survival advantage to the metastatic cell. Another
important mechanism is integrin-mediated death in which
caspase 8 is recruited to and activated by clusters of unligated
integrins to the cell surface independent of FADD [126]. This
is important because integrin-mediated adhesion promotes
cell survival, but could play an important role in determining
the tropism of metastasis [124]. The roles of caspase 8 in
metastasis highlight the continuous interplay between tumor
cells and the environment. Even when redundant mechanisms

exist (i.e., adherence to non-preferred ligands), they may not
be as efficient nor sufficient to overcome the biochemical
signals impinging upon the tumor cell.

Growth Arrest Specific 1 (Gas1)

Gas1 was first identified as a cell cycle arrest gene when its
expression was down-regulated after growth induction of
arrested NIH3T3 cells [128]. Gas1 encodes a GPI-anchored
membrane protein [129] that is a cell cycle inhibitor (G0 to S
phase transition) since Gas1 over-expressing cells do not
incorporate BrdU. Gas1 was first identified as a metastatic
suppressor in a genome wide shRNA screen in B16-F10
melanoma cells [130]. Gas1 plays a role in several tumors,
including colorectal, prostate, bladder, and melanoma. Gas1
regulates apoptosis [131] since Gas1 suppression renders
some tumor cells resistant to drug-induced apoptosis.

Gas1 over-expression also significantly reduces tumorige-
nicity in glioma, lung and gastric cancers. The Gas1 protein
associates with Sonic Hedgehog (SHH) and Indian Hedgehog
(IHH), secreted proteins that can signal to adjacent or distant
cells. SHH transcription is linked to specific types of tumors.
Likewise, Gas1 can be induced byWnt proteins which encode
proteins that bind to SHH [132]. Gas1 appears to suppress
metastasis by regulating/inducing apoptosis through caspases
3 and 9 after disseminated tumor cells arrive at metastatic
sites.

KAI1/CD82 (Kang-ai 1)

KAI1, located on human chromosome 11p11.2, and was first
identified as a metastasis suppressor from a microcell-
mediated chromosome transfer (MMCT) of chromosome 11
into highly metastatic rat prostate cancer cells [133]. Subse-
quently, its role as a metastasis suppressor has been buttressed
with data in diverse cell types. KAI1 belongs to a large family
of membrane glycoproteins, includingME491/ME491/CD63,
MRP-1, TAPA-l, CD37, and CD53. However, not all
tetraspanin family members are metastasis suppressors.

Metastasis suppression is presumably due to inhibition of
cell motility/invasion, induction of senescence or induction of
apoptosis. KAI1 impedes dissemination via crosstalk between
KAI1/CD82 on the metastasizing tumor cell and Duffy anti-
gen receptor for cytokines (DARC) on the adjacent vascular
cells [134]. When KAI1 expressing tumor cells and DARC
expressing endothelial cells interact, tumor cell proliferation is
inhibited and senescence is induced [134]. KAI1 can also
increase apoptosis and senescence after tumor cells have
migrated to secondary sites by decreasing intracellular β-
catenin/Wnt pools and through packaging and secretion in
exosomes [135].
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1.1. Non-Coding RNA and Regulatory RNA

Non-coding RNA (ncRNA) make up a diverse group of RNA
molecules, including ribosomal (rRNA), transfer (tRNA), mi-
cro (miRNA), long non-coding (lncRNA), small nucleolar
(snoRNA), small interfering (siRNA), small nuclear
(snRNA) and piwi-interacting (piRNA) RNA [136]. ncRNA
and miRNA can repress protein expression by means of
inhibition of translation and promoting degradation. miRNA
are involved in post-transcriptional modification as well as
negative regulation of gene expression. When acting as effec-
tors of tumor formation, they are termed oncomir. Similarly,
metastasis regulatory miRNA are termed metastamir [137].
Due to space limitations, readers are referred to recent excel-
lent reviews showing metastamir involvement in metastasis
suppression [4, 137–140]. However, the roles of other regu-
latory RNA in metastasis are just beginning to be identified.
For example, HOTAIR (Hox antisense intergenic RNA) was
the first lncRNA associated with metastasis. HOTAIR inter-
acts with PRC2 complex which in turn transcriptionally si-
lences metastasis suppressor genes [141, 142]. Interestingly,
miRNA and lncRNA pathways can interact to create complex
regulatory networks [143], but systematic evaluation of roles
in metastasis have not yet been established [144]. To our
knowledge, the other regulatory RNA have not yet been
described as regulators of metastasis, but we feel certain that
this situation will change in the near future.

Metastasis Suppressors Affecting Colonization

KISS1

Discovered to suppress metastasis in malignant melanoma via
subtractive hybridization, KISS1 is a metastasis suppressor
protein mapping to chromosome 1q32 [145, 146]. KISS1 is a
proprotein requiring secretion and proteolytic processing by
furin outside of the cell to suppress metastasis [147]. The
peptide products of KISS1 are called kisspeptins (KP). The
known bioactive fragment of KISS1 (KP54) is a 54 amino
acid peptide that binds a G-protein receptor, KISS1R (former-
ly GPR54 or AXOR12 of the Gq/11 class). KISS1R activation
activates MAPK signaling, mobilizes intracellular Ca2+, arrest
of cell cycle, and down-regulates MMP9 through inhibition of
NFkB signaling [148–150]. KISS1 and KISS1R also play
important roles in the regulation of puberty through the
hypothalamus-pituitary-gonadal axis [151].

Cells expressing KISS1 are able to accomplish every step of
the metastatic cascade except colonization of secondary sites.
Clinical reports generally correlate KISS1 expression with
more favorable prognosis, except in cases of hepatocellular
carcinoma [145]. The exact mechanism of KISS1-mediated

metastasis suppression remains unclear, as KISS1 retains the
ability to suppressmetastasis even in the absence of KISS1R on
the tumor cells. This observation leads to the hypothesis that
paracrine mechanisms may be involved, but evidence to that
mechanism is lacking. Recent reports suggest an intracellular
interaction between KISS1 and PGC1α leading to increased
mitochondrial biogenesis and a reversal of the Warburg Effect
[152]. At this time, it can only be speculated how KISS1
regulation of metabolism could control colonization.

N-myc Downstream Regulated Gene 1 (NDRG1)

NDRG1 was identified as a metastasis suppressor gene in
colon cancer. Loss of NDRG1 expression is generally corre-
lated with an increase in cancer invasion and metastasis [153].
NDRG1 is associated with the cycling of E-cadherin to the
cell surface, suggesting a role in reversing the invasive phe-
notype upon colonization of a new tissue [154]. There is also
evidence that NDRG1 interacts with LRP6, a Wnt co-receptor
to block Wnt signaling, inhibiting activation of β-catenin,
rendering a non-proliferative phenotype [154]. NDRG1 also
has the capacity to block the Ras/Raf and NFkB pathways,
attenuating proliferation and down-regulating invasive pheno-
types [153]. NDRG1 has also been implicated in blocking
cellular motility by inhibiting g-actin-ARP2/3 polymerization
to generate stress fibers, and the inhibition of ROCK to block
formation of myosin light chain complexes for contractile
motion [153].

NM23-H1 (NME1)

NM23 (non-metastatic clone 23) was discovered by Patricia
Steeg by differential colony hybridization of K1735 melano-
ma cell clones [155]. Reports of NM23 as a metastasis sup-
pressor have been muddled because of imprecision regarding
which isoform was being tested. In general, NM23 decreases
the efficiency of events leading to metastasis without altering
primary tumor proliferation by the regulation of cell differen-
tiation marker proteins [156]. With the ability to have multiple
different functions, NM23 plays roles in several signaling
pathways. NM23 can block MAPK signaling, prevent actin
polymerization which, in turn, blocks cell motility and stops
proliferation at secondary tissues [157]. Acting as a transcrip-
tion factor regulator, NM23 can also down-regulate growth
factors (e.g. Wnt5b), matrix metalloproteinase proteins, and
apoptosis inhibitor proteins [158]. These data have been found
in multiple cell lines, however, so a universal effect is not
thoroughly understood. Clinically, an inverse correlation has
been seen with NM23 in breast cancer, melanoma, ovarian
cancer, and hepatocellular carcinoma [156]. While NM23 can
down-regulate proliferation and migratory genes in a second-
ary tissue, it is a versatile protein which has been shown to
suppress metastasis at multiple steps in the metastatic cascade.
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Table 1 Metastasis suppressors and their proposed mechanisms of action

Metastasis Suppressor Aliases Proposed Function(s) 2 Step(s) in metastasis inhibited 3

BRMS1 SIN3-HDAC complexes (Chromatin modeling)
Reduce phosphoinositide signaling
Restore gap junction communication

Invasion
Transport
Colonization

CADM1 TSLC1
IgSF4
Necl2
Syncam

Up-regulates caspase-3, BAX and p21
Cytoskeletal remodeling
Down-regulate MMP
Cell cycle arrest
Apoptosis
Invasion

Colonization

Caspase-8 Induce apoptosis/anoikis Cell cycle arrest
Integrin mediated death (IMD)

Survival
Transport
Invasion
Colonization

CD44 CDW44 CSPG8 ECMR-III Binds to hyaluronic acid receptor
Cell-cell and cell-matrix adhesion

Migration

CRMP4 DRP-3
ULIP-1

Cytoskeletal remodeling Invasion

DCC CRC18 CRCR1 MRMV1 Cytoskeletal remodeling
Regulate MAPK signaling
Cell cycle arrest
Promote apoptosis

Transport
Migration
Invasion

DLC-1 STARD12 p122
RhoGAP

Cytoskeletal remodeling
Rho GTPase activating protein

Motility
Migration
Invasion

E-Cadherin CD324 Cell-cell and cell-matrix adhesion EMT
Invasion

FXR NR1H4 Lipid and glucose metabolism
Promote apoptosis

Invasion
Colonization

GAS1 Cell cycle arrest
Promote apoptosis

Colonization

GSN ADF
AGEL

Cytoskeletal remodeling
Inhibit EMT

Migration

HUNK MAK-V Cytoskeletal remodeling Motility
Invasion

KAI1 CD82
SAR2
TSPAN27

Bind endothelial DARC (induce apoptosis)
EGFR desensitization
Up-regulate TIMPs
Increase E-cadherin and β-catenin interaction

Intravasation
\Transport

KISS1 Ligand for G-protein receptor (KISS1R)
Angiogenesis
Interact with PGC1α (cell metabolism)

Colonization
Angiogenesis

LIFR CD118 STWS Activate hippo signaling Migration
Invasion
Colonization

LSD1 KDM1 Chromatin remodeling Invasion

MTBP ACTFS HDMX
HDM2

Cell cycle arrest
Cytoskeletal remodeling
Mitotic progression
Chromosome segregation

Invasion

MetastamiR Multiple functions (in general, reducing
protein expression of metastasis promoters)

Migration
Invasion
EMT
Colonization

MKK4
MKK6
MKK7
P38

MAPKK4
MAPKK6
MAPKK7
MAPKK14

Stress activated MAPK signaling Migration
Colonization

NDRG1 Drg1,
Cap43

Promote cell differentiation
Up-regulate E-cadherin

Angiogenesis
Invasion
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MKK4, MKK7, and p38

Maintaining a delicate balance between ERK and p38 activa-
tion, the MAP Kinase Kinase proteins (MKKs) dictate a
stress-activated protein (SAPK) signaling pathway that can
lead to dormancy and proliferation. In response to stress
signals from the environment, MAPKKK is activated, which
can, in turn, activate MKK4, MKK7, or MKK3/MKK6 [159].
Activation of MKK4 leads to phosphorylation of p38, which
can lead to arrest of cell cycle, apoptosis, and ultimately
dormancy by suppression of cell growth [159, 160]. It is
important to note that this effect is not seen in all cancer
models, and the effect of p38 is likely resultant of microenvi-
ronment interactions with the disseminated cancer cells. Al-
ternatively, MKK4 andMKK7 phosphorylate JNK1 (c-JunN-
terminal kinase) as another prong of the SAPK pathway. This
pathway can lead to activation of SMADs, p21, p53, and
numerous mitochondrial proteins involved in apoptosis
and cell dormancy. Activation of p38 or JNK can both
achieve cell dormancy as long as MKK4 or MKK7
kinase activity is preserved. When expression of
MKK4 is lost, cells resume a metastatic phenotype
and begin to proliferate in secondary tissue [161]. A
loss of MKK4 expression in clinical settings tends to
correlate with poor patient prognosis, while high

amounts of phosphorylated (active) MKK4 tends to
correlate with better patient outcome, suggesting an
important role for MKK4 activation to maintain metas-
tasis suppression [162].

Cell Adhesion Molecule/Tumor Suppressor Lung Cancer 1
(CADM1, TSLC1)

CADM1 TSLC1 is descriptively named for its role in cell-to-
cell adhesion. An immunoglobulin superfamily member,
CADM1 is responsible for eliciting adhesive properties
in human epithelial cells, particularly mammary tissues
[163]. Originally thought of as a tumor suppressor,
CADM1 can attenuate primary tumor growth in some
cancer lines, including non-small cell lung cancer and
breast cancer [164].

True to its role as a metastasis suppressor, CADM1 expres-
sion does not alter tumor cell-autonomous properties involv-
ing proliferation or invasion [165]. Rather, CADM1 requires
the host’s adaptive immune system, primarily T-cells, to sup-
press metastasis [165]. CADM1 expression is regulated large-
ly by promoter hypermethylation, leading to loss of CADM1
expression and a more motile, EMT phenotype in metastatic
lesions [166–168].

Table 1 (continued)

Metastasis Suppressor Aliases Proposed Function(s) 2 Step(s) in metastasis inhibited 3

Rit42
RTP
PROXY-1

Inhibit TGFβ mediated EMT Colonization

Nm23 NDKB
NME1

Inhibit activation of MAPK pathways
Ras signaling
Histidine kinase activity
NDP kinase activity

Migration
Colonization

OGR1 GPR68 GPR12A G-protein coupled receptor signaling Migration

RhoGDI2 ARHGDIB Cytoskeletal remodeling
Endothelin and Neuromedin U signaling
Regulates Rho GTPases

Migration
Colonization

RKIP PFL0955C Competitive inhibitor for RAF1-MEK interaction
Cytoskeletal remodeling

Migration
Invasion

RRM1 RIR1
RR1

Increases PTEN expression
Decreases FAK phosphorylation
Cytoskeletal remodeling

Motility
Invasion

SSeCKs AKAP12
GRAVIN

Scaffold for protein kinases
Regulate Src,PKC and Rho signaling
VEGF secretion

Angiogenesis
Migration

Stefin A CST6
EPM1
STFB

Cathepsin inhibitor Angiogenesis
Migration
Invasion

TIMP TIMP1
TIMP2
TIMP3
TIMP4

Inhibit MMP expression and signaling Angiogenesis
Migration
Invasion
Transport

Adapted from Bohl et al. [13]
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Farnesoid X Receptor (FXR)

A nuclear hormone receptor, FXR, is a part of a receptor
superfamily with four known isoforms which are found pri-
marily in liver, intestine, kidney, and adrenal tissues. Under
normal conditions, FXR is primarily a bile acid receptor which
can bind sodium deoxycholate, responsible for bile acid and
lipid homeostasis. Upon activation, FXR dimerizes with RXR
to bind DNA and promote differential transcription. A main
target of FXR is NDR2, which is up-regulated in response to
FXR binding to suppress metastasis [169]. Recent reports
have shown that FXR can bind sodium deoxycholate secreted
from bone, which prevents the migration by inducing apopto-
sis, increasing uPA, and the formation of f-actin [170]. All of
these results implicate a place for FXR as a metastasis sup-
pressor, but the in vitro data is at odds with clinical data in
some cancers. For example, FXR expression in pancreatic and
esophageal cancers is correlated with poor patient prognosis
[171–173]. As with other metastasis suppressors, designation
in this category is cell type dependent.

Conclusions and Perspectives

Since discovery of the first metastasis suppressor in the mid-
1980s, the family of molecules has steadily grown in size and
insights into their respective mechanisms of action have in-
creased concurrently. However, much remains to be learned.
At an intuitive level, the conclusion that metastasis suppres-
sors act at the interface between a tumor cell and each micro-
environment is logical, since by definition, expression of
metastasis suppressors allow growth in some tissues, but not
others. At this boundary, metastasis suppressors receive and/
or transmit signals to or from tumor cells. This regulatory
circuitry is as complex as the process of metastasis itself.
Multiple convergent and divergent pathways impinge upon
myriad molecules, making it difficult to sort out primary from
secondary from tertiary and higher order cellular changes.

Even this relatively superficial examination of metastasis
suppressor function highlights several points. First, many, if
not most, metastasis suppressor functions are cell-type depen-
dent. While many metastasis suppressors can exert effects
across multiple cell types, others do not. One must be careful
not to extrapolate findings from one tumor type to another
without support from experimental data.

Second, metastatic tumor cells are master manipulators of
the microenvironment. Numerous examples where metastasis
suppressors affect metabolism, stem cell mobilization, im-
mune cell function and the extracellular matrix represent ways
in which cancer cells customize tissues. In doing so, it is
critical to distinguish tumor effects from host effects when
studying cancers in situ.

Third, since metastasis suppressor expression affects how
tumors respond to extrinsic signals, it can be posited that their
expression and/or post-translational modification can vary,
depending upon the microenvironment in which cancer cells
find themselves.

So, while metastasis suppressor expression in circulating
tumor cells appears to be offering some prognostic informa-
tion, substantially more research will be required to make
definitive conclusions. Likewise, recent data showing the
transient nature of an epithelial-to-mesenchymal and
mesenchymal-to-epithelial transition can occur in transit
[174, 175], so too can one expect that some of the metastasis
suppressor genes’ expression may change in the transit com-
partments of the blood or lymphatic vasculature.

Finally, metastasis suppressors offer hope for improved
prognostics as well as providing new targets for therapeutic
intervention. The former are beginning to be seen in ever-
growing clinical studies. Likewise, re-expression ofmetastasis
suppressors may provide biomarkers from which therapeutic
efficacy can be determined (Table 1).
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